Value Iteration over Belief Subspace
نویسنده
چکیده
Partially Observable Markov Decision Processes (POMDPs) provide an elegant framework for AI planning tasks with uncertainties. Value iteration is a well-known algorithm for solving POMDPs. It is notoriously difficult because at each step it needs to account for every belief state in a continuous space. In this paper, we show that value iteration can be conducted over a subset of belief space. Then, we study a class of POMDPs, namely informative POMDPs, where each observation provides good albeit incomplete information about world states. For informative POMDPs, value iteration can be conducted over a small subset of belief space. This yields two advantages: First, fewer vectors are in need to represent value functions. Second, value iteration can be accelerated. Empirical studies are presented to demonstrate these two advantages.
منابع مشابه
Solving Informative Partially Observable Markov Decision Processes
Solving Partially Observable Markov Decision Processes (POMDPs) generally is computationally intractable. In this paper, we study a special POMDP class, namely informative POMDPs, where each observation provides good albeit incomplete information about world states. We propose two ways to accelerate value iteration algorithm for such POMDPs. First, dynamic programming (DP) updates can be carrie...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملSpace-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs
Finding optimal policies for general partially observable Markov decision processes (POMDPs) is computationally difficult primarily due to the need to perform dynamic-programming (DP) updates over the entire belief space. In this paper, we first study a somewhat restrictive class of special POMDPs called almost-discernible POMDPs and propose an anytime algorithm called spaceprogressive value it...
متن کاملThe Evaluation of Sensors' Reliability and Their Tuning for Multisensor Data Fusion within the Transferable Belief Model
On Preference Representation on an Ordinal Scale p. 18 Rule-Based Decision Support in Multicriteria Choice and Ranking p. 29 Propositional Distances and Preference Representation p. 48 Value Iteration over Belief Subspace p. 60 Space-Progressive Value Iteration: An Anytime Algorithm for a Class of POMDPs p. 72 Reasoning about Intentions in Uncertain Domains p. 84 Troubleshooting with Simultaneo...
متن کاملValue Iteration Working With Belief Subsets
Value iteration is a popular algorithm for solving POMDPs. However, it is inefficient in practice. The primary reason is that it needs to conduct value updates for all the belief states in the (continuous) belief space. In this paper, we study value iteration working with a subset of the belief space, i.e., it conducts value updates only for belief states in the subset. We present a way to sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001